
FlowPilot: A Generative AI-Driven Visual
Language for Computational Thinking Education

Tommaso Turchi
Department of Computer Science

University of Pisa
Pisa, Italy

tommaso.turchi@unipi.it

Abstract—This paper introduces FlowPilot, a novel flow-based
visual programming language designed to enhance Computa-
tional Thinking (CT) education. FlowPilot leverages generative
AI to create a dynamic, browser-based environment where users
can construct programs using natural language descriptions. By
integrating AI-driven block generation with a flow-based visual
interface, FlowPilot supports key CT pillars such as abstraction
and decomposition. This approach offers a unique platform for
learners to explore programming concepts at various levels of
complexity, fostering a deeper understanding of computational
processes.

Index Terms—Visual Programming, Computational Thinking,
Generative AI

I. CONTENT AND CLAIMS

In our increasingly software-driven world, computational
literacy and coding have become essential skills. Initiatives
like the Hour of Code1 have introduced these concepts to
diverse groups, focusing on fostering Computational Thinking
(CT) skills – problem-solving abilities central to Computer
Science, such as abstraction and pattern recognition. Wing [1]
defined CT as skills needed to solve complex problems using
computers, applicable across various domains.

Programming has proven effective in developing CT skills
[2], and many techniques have been employed to lower its
barriers and foster the spread of computational literacy, often
with mixed results [3], [4]. Visual Programming (VP) emerged
as a paradigm to help reduce the syntactic burden by represent-
ing instructions graphically. For instance, puzzle-like blocks
represent components, with shapes indicating input/output
compatibility [5]. However, Visual Programming Languages
(VPLs) often face a limitation: they’re typically fixed at a
specific abstraction level, providing predefined blocks that
may not align with a user’s mental model. For example, in
programming a calculator, a VPL might offer individual blocks
for each arithmetic operation, while a user might prefer a
single block for all calculations. This mismatch between the
VPL’s tools and the user’s preferred abstraction level can
potentially hinder the development of CT skills.

A. FlowPilot: Enhancing CT through Generative AI

To address these limitations, we introduce FlowPilot2, an
innovative flow-based visual programming language primarily

1https://hourofcode.com
2https://flowpilot.trx.li

designed for novice programmers and CT education. FlowPilot
leverages generative AI to enhance Computational Thinking
(CT) education and is implemented in JavaScript, running in
the browser using the ReactFlow library3 for diagramming to
provide an intuitive interface for users to construct programs
visually.

The integration with OpenAI’s GPT API4 allows users to
specify the behavior, inputs, and outputs of new blocks (or
nodes) using natural language (see Figure 1). The system
then uses OpenAI models to generate corresponding JavaScript
code, creating a function for each block. FlowPilot supports a
range of data types for inputs and outputs, including Numbers,
Strings, Booleans, Arrays, and Objects, providing flexibility
for various programming tasks.

Once the code is generated, FlowPilot automatically names
the block by summarizing the function code. Users can then
connect these blocks to construct their program. When con-
nections are made, a play button appears on output blocks,
allowing users to execute that portion of the program and see
the results immediately.

Fig. 1. FlowPilot’s block (called node) creation dialog, demonstrating the
natural language interface for specifying custom block behavior.

3https://reactflow.dev/
4https://platform.openai.com/docs/overview



This approach enables rapid prototyping and experimen-
tation, allowing users to focus on problem-solving and CT
rather than syntax. By generating code based on natural
language descriptions, FlowPilot effectively lowers the barrier
to programming while still exposing users to real JavaScript
code. Furthermore, FlowPilot can support multiple levels of
abstraction within the same environment. Using our calcu-
lator example, FlowPilot can accommodate both the lower-
level approach with individual arithmetic operation blocks
and the higher-level approach with a single calculation block
(see Figure 2). This flexibility allows users to work at the
abstraction level that best suits their current understanding and
the problem at hand.

Fig. 2. FlowPilot’s flexibility in abstraction levels: Lower-level implemen-
tation using individual arithmetic operation blocks (top); Higher-level imple-
mentation using a single calculation block (bottom). This demonstrates how
users can work at different abstraction levels within the same environment.

FlowPilot is designed to support two key pillars of Compu-
tational Thinking:

a) Abstraction: Users can decide the level of abstraction
for each block, from individual functions to complex, multi-
function components. This flexibility allows learners to grasp
the concept of abstraction layers in programming and to move
between different levels of abstraction as their understanding
grows [6]. We recognize the need to carefully manage potential
additional cognitive load and plan to develop adaptive scaffold-
ing techniques in future iterations to guide users in selecting
appropriate abstraction levels (e.g., prompt templates).

b) Decomposition: The flow-based interface naturally
encourages problem decomposition. Users can break down
complex problems into smaller, manageable subproblems rep-
resented by individual blocks. The ability to create custom
blocks at various abstraction levels further supports this.

Moreover, the process of narrowing and refining block gen-
eration prompts may itself foster CT skills. As users iterate on
their descriptions to achieve desired functionality, they engage
in a form of abstraction and problem decomposition, albeit in a
novel context that merges natural language understanding with
programming concepts. This process aligns with the concept
of “proompting” introduced in [7], potentially representing
a new form of CT that merges human intelligence with AI
capabilities.

By supporting multiple levels of abstraction within the
same environment, FlowPilot provides a more flexible and
adaptable learning experience compared to traditional VPLs.
This approach allows learners to start at a comfortable level
of abstraction and gradually move to more complex represen-
tations as their understanding grows.

While initial user feedback has been promising, we ac-
knowledge potential challenges in this approach. The reliance
on AI-generated code may lead to a lack of understanding
of underlying programming concepts if not properly balanced
with traditional learning methods. Additionally, the quality
and consistency of AI-generated blocks require careful con-
sideration to ensure they align with educational objectives. To
address these concerns, we plan to conduct a comprehensive
evaluation study to assess FlowPilot’s impact on CT skill de-
velopment, user experience with flexible abstraction levels, and
the effectiveness of AI-generated blocks in supporting learning
outcomes. This evaluation will inform future refinements to
ensure educational objectives are met.

II. RELEVANCE

FlowPilot is highly relevant to the VL/HCC community for
several reasons:

a) Innovative Visual Language Design: FlowPilot ex-
tends the traditional Visual Programming paradigm by in-
corporating AI-generated components, presenting a novel ap-
proach to visual language design.

b) Natural Language Integration: The use of natural
language for block specification bridges the gap between
conceptual thinking and program implementation, a key area
of interest in human-centric computing.

c) Generative AI in Education: FlowPilot directly ad-
dresses the VL/HCC 2024 special emphasis on Generative AI’s
impact, offering a concrete example of how these techniques
can enhance visual programming environments while raising
important questions about balancing AI assistance with human
understanding in educational contexts.

d) Ethical Considerations: FlowPilot raises important
questions about the role of AI in programming education.
It prompts discussions on the balance between AI assistance
and human understanding, the potential for AI to democratize
programming education, and the implications of relying on
AI-generated code in learning environments.

e) Human-AI Collaboration: FlowPilot showcases a new
paradigm of human-AI collaboration in programming edu-
cation, aligning with the conference’s interest in critiquing
Generative AI approaches from a human perspective.

III. PRESENTATION

We will showcase FlowPilot through an interactive live
demonstration during the conference. Attendees will have the
opportunity to interact directly with FlowPilot, creating blocks
using natural language and constructing simple programs.
This hands-on experience will allow participants to explore
FlowPilot’s innovative features and understand its potential
impact on Computational Thinking education.



ACKNOWLEDGMENT

This work was produced with the co-funding of the Eu-
ropean Union – Next Generation EU, in the context of
The National Recovery and Resilience Plan, Investment 1.5
Ecosystems of Innovation, Project Tuscany Health Ecosystem
(THE), ECS00000017. Spoke 3.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33–35, Mar. 2006.

[2] G. Orr, “Computational thinking through programming and algorithmic
art,” in SIGGRAPH 2009: Talks. New Orleans Louisiana: ACM, Aug.
2009, pp. 1–1.

[3] D. Weintrop, “Blocks, text, and the space between: The role of representa-
tions in novice programming environments,” in 2015 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). Atlanta,
GA: IEEE, Oct. 2015, pp. 301–302.

[4] A. Malizia, D. Fogli, F. Danesi, T. Turchi, and D. Bell, “Tapasplay:
A game-based learning approach to foster computation thinking skills,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2017, pp. 345–346.

[5] “B&B 2019 Foreword,” in 2019 IEEE Blocks and Beyond Workshop
(B&B), 2019, pp. vi–vii.

[6] K. Brennan and M. Resnick, “New frameworks for studying and assessing
the development of computational thinking,” in Proceedings of the 2012
Annual Meeting of the American Educational Research Association,
Vancouver, Canada, vol. 1, 2012, p. 25.

[7] A. Repenning and S. Grabowski, “Proompting is computational thinking,”
Proceedings http://ceur-ws. org ISSN, vol. 1613, p. 0073, 2023.


